Small Molecule Therapeutics Selective Release of a Cyclopamine Glucuronide Prodrug toward Stem-like Cancer Cell Inhibition in Glioblastoma
نویسندگان
چکیده
Recent data suggest that inhibition of the Hedgehog pathway could be a therapeutic target for glioblastoma. Alkaloid cyclopamine inhibits Hedgehog signaling, depleting stem-like cancer cells derived from glioblastoma. However, this compound is toxic for somatic stem cells, preventing its use for clinical applications. In this study, we tested a derivatization product of cyclopamine in the form of cyclopamine glucuronide prodrug (CGP-2). This compound was used in vitro and in vivo toward glioblastoma-initiating cells (GIC). Results obtained in vitro indicate that CGP-2 is active only in the presence of b-glucuronidase, an enzyme detected in high levels in necrotic areas of glioblastomas. CGP-2 decreased proliferation and inhibited the self-renewal of all GIC lines tested. Hedgehog pathway blockade by 10 mmol/L of CGP-2 induced a 99% inhibition of clonogenicity on GICs, similar to cyclopamine treatment. Combination of CGP-2 with radiation decreased clonogenic survival in all GIC lines compared with CGP-2 alone. In a subcutaneous glioblastoma xenograft model, a two-week CGP-2 treatment prevented tumor growth with 75% inhibition at 8 weeks, and this inhibition was still significant after 14 weeks. Unlike cyclopamine, CGP-2 had no detectable toxic effects in intestinal crypts. Our study suggests that inhibition of the Hedgehog pathway with CGP-2 is more effective than conventional temozolomide adjuvant, with much lower concentrations, and seems to be an effective therapeutic strategy for targeting GICs.Mol Cancer Ther; 13(9); 1–11. 2014 AACR.
منابع مشابه
Selective release of a cyclopamine glucuronide prodrug toward stem-like cancer cell inhibition in glioblastoma.
Recent data suggest that inhibition of the Hedgehog pathway could be a therapeutic target for glioblastoma. Alkaloid cyclopamine inhibits Hedgehog signaling, depleting stem-like cancer cells derived from glioblastoma. However, this compound is toxic for somatic stem cells, preventing its use for clinical applications. In this study, we tested a derivatization product of cyclopamine in the form ...
متن کاملA new cyclopamine glucuronide prodrug with improved kinetics of drug release.
We prepared a new glucuronide prodrug of cyclopamine designed to target selectively the Hedgehog signalling pathway of cancer cells. This prodrug includes a novel self-immolative linker bearing a hydrophilic side chain that can be easily introduced via"click chemistry". With this design, the prodrug exhibits reduced toxicity compared to the free drug on U87 glioblastoma cells. However, in the p...
متن کاملInhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells.
A commonly activated signaling cascade in many human malignancies, including glioblastoma multiforme, is the Akt pathway. This pathway can be activated via numerous upstream alterations including genomic amplification of epidermal growth factor receptor, PTEN deletion, or PIK3CA mutations. In this study, we screened phosphatidylinositol 3-kinase/Akt small-molecule inhibitors in an isogenic cell...
متن کاملAn orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer.
Recent evidence suggests that blockade of aberrant Hedgehog signaling can be exploited as a therapeutic strategy for pancreatic cancer. Our previous studies using the prototype Hedgehog small-molecule antagonist cyclopamine had shown the striking inhibition of systemic metastases on Hedgehog blockade in spontaneously metastatic orthotopic xenograft models. Cyclopamine is a natural compound with...
متن کاملSmall Molecule Therapeutics Bisphosphonamidate Clodronate Prodrug Exhibits Selective Cytotoxic Activity against Melanoma Cell Lines
Bisphosphonates are used clinically to treat disorders of calcium metabolism and malignant bone disease and are known to inhibit cancer cell growth, adhesion, and invasion. However, clinical use of these agents for the treatment of extraskeletal disease is limited because of low cell permeability. We recently described a bisphosphonamidate prodrug strategy for efficient intracellular release of...
متن کامل